Cessna 172SP & NAV III
Maneuvers Checklist
Introduction

Power Settings

This document is intended to introduce to you the standard method of performing maneuvers in Sunair Aviation's Cessna 172SP and NAV III aircraft. Each maneuver has been written to reduce the amount of steps and aid in memorization.

The Cessna 172 has six simple power settings each pilot should remember. They are:

1. Climb Power-.................................Full
2. Normal Cruise-...............................2300 RPM
3. Slow Cruise-.................................2000 RPM
4. Pattern / Landing-............................2000 RPM
5. Slowing during Clearing Turns-.........2000 RPM

As always, if the approved Airplane Flight Manual and this Maneuvers Checklist disagree, the procedure in the AFM/POH should be followed in the interest of safety.
Takeoff Briefing

Objective: To demonstrate a complete Takeoff brief, outlining emergency task if an abnormal situation were to arise as well as the initial departure procedure.

Procedure

1. Runway Departing
2. Heading Bug Set to Runway Heading
3. Wind Direction (note crosswind)
4. Type of Takeoff
5. Flap Setting for Takeoff
6. Rotation Speed
7. Abort Plan Scenarios
8. Initial Departure Procedure
9. Any Questions

Example:

Today we’re departing Runway 13, 135 is set and bugged, it will be a Normal Takeoff, Flaps zero, Rotation will be 55 Knots. Winds are from 180 at 12 Knots, that’s a right crosswind. We will abort on any red cautions, any gauges not in the green or anything abnormal. If anything were to occur prior to rotation will be close the throttles and apply maximum braking. After rotation, with usable runway left, we will land on the remaining runway. Our turn back altitude will be 1100 feet. If anything were to occur below 1100 feet, we will land straight ahead and only turn left or right to avoid obstacles. Above 1100 feet, winds are from right to left, we will make a right turn back to runway 31 or runway 3. If all goes well, it will be runway heading up 3000 feet. Any questions?
Approach Briefing

Objective: To demonstrate a complete VFR Approach Brief, outlining the important elements related to a safe landing.

Procedure

1. Runway Landing
2. Method of Backup Guidance
3. Pattern Altitude
4. Pattern Entry (Note Non-Standard Flow)
5. Type of Landing
6. Flaps Desired
7. Go Around Point
8. Left or Right Turn After Landing
9. Any Questions

Example

Today we are landing Runway 13, I will OBS 135 for backup guidance. Pattern altitude will be 1100 indicated, we will plan on a left downwind, this will be a normal landing with full flaps. We will go around if we are not down by the runway intersection 3-21. After landing it will be a right turn. Any Questions?
Steep Turns

Objective: To maintain two opposite-direction, level turns while rolling out on entry heading for both turns

Practical Test Standards

<table>
<thead>
<tr>
<th>Practical SEL:</th>
<th>45º Bank ±5º, Altitude ±100ft., Heading ±10º, Airspeed ±10 Knots</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comm. SEL:</td>
<td>50º Bank ±5º, Altitude ±100ft., Heading ±10º, Airspeed ±10 Knots</td>
</tr>
<tr>
<td>CFI SEL:</td>
<td>50º Bank ±5º, Altitude ±100ft., Heading ±10º, Airspeed ±10 Knots</td>
</tr>
</tbody>
</table>

Procedure

1. Pre-Landing Checklist
2. Clearing Turns
3. 95 KIAS (Approx 2000-2200 RPM)
4. Roll into 45 degrees bank (50 Commercial)
5. Maintain Altitude and Airspeed
 - Back pressure + Approx 100-200 RPMS, Adjust Trim
6. Roll out ½ bank angle prior to entry heading
 - Forward stick pressure, reduce RPM, Adjust Trim
7. Cruise Checklist

Restrictions

<table>
<thead>
<tr>
<th>Restrictions</th>
<th>Minimum</th>
<th>Optimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude</td>
<td>1500’</td>
<td>3000’</td>
<td></td>
</tr>
<tr>
<td>Speed</td>
<td>90</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Slow Flight

Objective: To maneuver the aircraft safely at minimum possible airspeed

Practical Test Standards

- **Private SEL:** Bank ±10°, Altitude ±100 feet, Heading ±10, Airspeed +10/-0
- **Comm. SEL:** Bank ± 5°, Altitude ±50 feet, Heading ±10, Airspeed +5/-0
- **CFI SEL:** Bank ± 5°, Altitude ±50 feet, Heading ±10, Airspeed +5/-0

<table>
<thead>
<tr>
<th>Restrictions</th>
<th>Minimum</th>
<th>Optimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude</td>
<td>1500</td>
<td>3000’</td>
<td></td>
</tr>
<tr>
<td>Speed</td>
<td>45</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Procedure

1. Pre-Landing Checklist
2. Clearing Turns
3. Power 1700 RPM
4. Below 110 KIAS-Flaps 10
5. Below 105 KIAS-Flaps 20, Flaps 30
6. Adjust Pitch, Power, Trim- Maintain 45 KIAS
7. Accomplish level flight, climbs, turns, and descents as required by Instructor/Examiner
8. Recovery:
 a. Apply Full Power and Flaps 20
 b. Maintain Altitude-Flaps 10
 c. Above Vy-Flaps 0
9. Cruise Checklist

Note: Turns in slow flight shall be no greater than standard rate
Power-Off Stall

Objective: To demonstrate recovery from a stall in the landing configuration

Practical Test Standards

<table>
<thead>
<tr>
<th>Practical SEL:</th>
<th>Private SEL: Heading ±10º, Bank not to exceed 20º ±10º, V\textsubscript{Y} before Flaps 0º</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comm. SEL:</td>
<td>Heading ±10º, Bank not to exceed 20º ±5º, V\textsubscript{Y} before Flaps 0º</td>
</tr>
<tr>
<td>CFI SEL:</td>
<td>Heading ±10º, Bank not to exceed 20º ±5º, V\textsubscript{Y} before Flaps 0º</td>
</tr>
</tbody>
</table>

Restrictions

<table>
<thead>
<tr>
<th>Restrictions</th>
<th>Minimum</th>
<th>Optimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude</td>
<td>1500’</td>
<td>3000’</td>
<td></td>
</tr>
<tr>
<td>Speed</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Procedure

1. Pre-Landing Checklist
2. Clearing Turns
3. Power 1700 RPM
4. Below 110 KIAS-Flaps 10
5. Below 105 KIAS-Flaps 20, Flaps 30
6. Descend 70 KIAS (Approx 100-200’)
7. Simultaneously reduce power to idle and slowly increase pitch to induce stall/buffet
8. Recovery
 a. Reduce AOA and Apply Full Power
 b. Flaps 20
 c. Climb 62 KIAS
 d. Positive rate-Flaps 10
 e. Positive rate-Flaps 0
 f. Climb 74 KIAS
9. Cruise Checklist
Power-On Stall

Objective:
To demonstrate recovery from a stall in the takeoff configuration

Practical Test Standards

<table>
<thead>
<tr>
<th>Objective</th>
<th>Practical SEL: Heading ±10º, Bank not to exceed 20º ±10º, VY before Flaps 0º</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Comm. SEL: Heading ±10º, Bank not to exceed 20º ±10º, VY before Flaps 0º</td>
</tr>
<tr>
<td></td>
<td>CFI SEL: Heading ±10º, Bank not to exceed 20º ±10º, VY before Flaps 0º</td>
</tr>
</tbody>
</table>

Restrictions

<table>
<thead>
<tr>
<th>Restrictions</th>
<th>Minimum</th>
<th>Optimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude</td>
<td>1500’</td>
<td>3000’</td>
<td></td>
</tr>
<tr>
<td>Speed</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Procedure

1. Pre-Landing Checklist
2. Clearing Turns
3. Power 1500 RPM (Maintain Altitude)
4. Slow 70 KIAS
5. At 70 KIAS, simultaneously increase pitch (Slowly) and apply full power
6. Increase pitch to a stall/buffet (approx 15 degrees)
7. Recovery
 a. Reduce AOA and Verify Full Power
 b. Climb 62 KIAS
8. Cruise Checklist
Soft-Field Take Off

Objective: To demonstrate a takeoff on a non paved runway surface

Practical Test Standards
- **Private SEL:** Vx or Vy as appropriate, Airspeed +10/-0
- **Comm. SEL:** Vx or Vy as appropriate, Airspeed +5/-0
- **CFI SEL:** Vx or Vy as appropriate, Airspeed +5/-0

<table>
<thead>
<tr>
<th>Restrictions</th>
<th>Minimum</th>
<th>Optimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed</td>
<td>62</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Procedure

1. Crew Brief Complete
2. Flaps 10
3. Roll onto runway with full aft yoke-minimum braking-DO NOT STOP
4. Smoothly apply full power
5. As nose lifts off, ease back pressure (nose wheel must remain off the ground)
6. Lift off at lowest possible airspeed
7. Remain in ground effect-accelerate to 62 KIAS-Begin Climb
8. Accelerate to 74 KIAS (Vy)
9. At safe altitude, retract Flaps 0
Soft-Field Landing

Objective: To demonstrate a takeoff on a non paved runway surface

Practical Test Standards

- **Private SEL:** VREF ±10/-5 Knots (Plus Wind Factor) on centerline, no side drift
- **Comm. SEL:** VREF ± 5 Knots (Plus Wind Factor) on centerline, no side drift
- **CFI SEL:** VREF ±5 Knots (Plus Wind Factor) on centerline, no side drift

Restrictions

<table>
<thead>
<tr>
<th>Restrictions</th>
<th>Minimum</th>
<th>Optimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed</td>
<td>65</td>
<td>Downwind: 85 KIAS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Base: 75</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Final: 70</td>
<td></td>
</tr>
</tbody>
</table>

Procedure

1. Approach Brief Complete
2. Pre-Landing Checklist Complete 5 nm prior
3. Downwind-100 KIAS
4. Abeam Numbers-Power 1500 RPM- Below 110 Flaps 10 - 85 KIAS
5. Base - Below 105 Flaps 20 – 75KIAS
6. Final – Below 105 Flaps 30 – 70 KIAS
7. Touchdown on intended touchdown point at minimum with a nose high pitch attitude
8. Keep the nose wheel off the ground as the airplane slows by increasing elevator pressure
9. Prevent nose wheel from rapidly falling by maintain aft pressure
Short-Field Take Off

Objective: To depart an airport with obstacles on departure demanding a maximum performance takeoff and climbout

Practical Test Standards

<table>
<thead>
<tr>
<th>Practical SEL:</th>
<th>Vx +10/-5 Knots until clear, then Vy +10/-5 Knots</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comm. SEL:</td>
<td>Vx +5/-0 Knots until clear, then Vy ±5 Knots</td>
</tr>
<tr>
<td>CFI SEL:</td>
<td>Vx +5/-0 Knots until clear, then Vy ±5 Knots</td>
</tr>
</tbody>
</table>

Restrictions

<table>
<thead>
<tr>
<th>Restrictions</th>
<th>Minimum</th>
<th>Optimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed</td>
<td>Liftoff: 51 KIAS</td>
<td>50-Ft Speed: 56</td>
<td>KIAS</td>
</tr>
</tbody>
</table>

Procedure

1. Crew Brief Complete
2. Flaps 10
3. Use all available runway
4. Hold brakes, apply full power, verify gauges in the green
5. Brakes release
6. VR: 51 KIAS
7. Climb 56 KIAS (Best Angle Flaps 10)
8. 50ft – accelerate to 74 KIAS
9. At a safe altitude, Flaps 0
Short-Field Landing

Objective: To arrive at an airport and land safely where there is a limited length of runway and/or obstacles on approach

Practical Test Standards

<table>
<thead>
<tr>
<th>Restrictions</th>
<th>Minimum</th>
<th>Optimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Speed | 61 KIAS | Downwind: 85 KIAS
 | | Base: 75
 | | Final: 61 |

Procedure

1. Approach Brief Complete
2. Pre-Landing Checklist Complete 5 nm prior
3. Downwind-100 KIAS
4. Abeam Numbers-Power 1500 RPM- Below 110 Flaps 10 - 85 KIAS
5. Base - Below 105 Flaps 20 – 75 KIAS
6. Final – Below 105 Flaps 30 – 61 KIAS
7. Adjust Pitch, Power, and Trim to allow for a stabilized approach
8. Close throttle slowly during flare-touchdown on intended touchdown point with little or no floating
9. Prevent nose wheel from slamming onto runway
10. Retract flaps after touchdown
11. Simulate and announce “Max Braking” for training and check ride purposes
Normal Take Off

Objective: To depart an airport during normal or crosswind conditions with more than adequate clearance of obstacles on departure

Practical Test Standards

<table>
<thead>
<tr>
<th></th>
<th>Private SEL: Vy +10/-5 Knots</th>
<th>Comm. SEL: Vy ±5 Knots</th>
<th>CFI SEL: Vy ±5 Knots</th>
</tr>
</thead>
</table>

Restrictions

<table>
<thead>
<tr>
<th>Restrictions</th>
<th>Minimum</th>
<th>Optimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude</td>
<td></td>
<td>Liftoff: 55 KIAS</td>
<td>Climbing 74KIAS</td>
</tr>
<tr>
<td>Speed</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Procedure

1. Crew Brief Complete
2. Flaps 0
3. Use all available runway
4. V_r: 55 KIAS
5. Climb 74 KIAS
6. Climb Check if exiting traffic pattern through 1000 AGL
Normal/Crosswind Landing

Objective: To arrive at an airport and land safely where there is limited length of runway and/or obstacles on approach

Practical Test Standards

Private SEL:	VREF +10/-5 Knots (Plus Wind Factor)
Comm. SEL:	VREF +10/-5 Knots (Plus Wind Factor)
CFI SEL:	VREF +10/-5 Knots (Plus Wind Factor)

<table>
<thead>
<tr>
<th>Restrictions</th>
<th>Minimum</th>
<th>Optimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed</td>
<td>65 KIAS</td>
<td>Downwind: 85 KIAS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Base: 75</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Final: 70</td>
<td></td>
</tr>
</tbody>
</table>

Procedure

1. Approach Brief Complete
2. Pre-Landing Checklist Complete 5 nm prior
3. Downwind-100 KIAS
4. Abeam Numbers-Power 1500 RPM- Below 110 Flaps 10 - 85 KIAS
5. Base - Below 105 Flaps 20 – 75 KIAS
6. Final – Below 105 Flaps 30 – 70 KIAS
7. Adjust Pitch, Power, and Trim to allow for a stabilized approach
8. Close throttle slowly during flare-touchdown on intended touchdown point with little or no floating
9. Prevent nose wheel from slamming onto runway
Chandelles

Objective: To demonstrate and exhibit the knowledge of the elements related to chandelles

Practical Test Standards

Private SEL:	Not Applicable
Comm. SEL:	Bank Angle Approx 30 degrees, completes rollout ±10 above stall
CFI SEL:	Bank Angle Approx 30 degrees, completes rollout ±10 above stall

Restrictions

<table>
<thead>
<tr>
<th>Restrictions</th>
<th>Minimum</th>
<th>Optimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude</td>
<td>1500'</td>
<td>3000'</td>
<td></td>
</tr>
<tr>
<td>Speed</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Procedure

1. Pre-Landing Checklist
2. Clearing Turns
3. 100 KIAS (Approx 2200 RPM) Maintain Altitude
4. Choose a reference point off wind
5. Establish / Maintain 30 degrees bank
6. Full Throttle –Gradually increase pitch to attain approx. 10-12 degrees pitch up at 90 degree point

 - 1st 90 → Bank = Constant 30
 → Pitch = Gradually increasing to approx 10-12 degrees

 - 2nd 90 → Bank = Gradually decreasing to no bank at 180 degree point
 → Pitch = Constant approx 10-12 degrees

7. 180 degree point-wings level-minimum controllable airspeed
8. Accelerate while maintain level flight
9. Cruise checklist
Lazy Eights

Objective: To demonstrate and exhibit the knowledge of the elements related to Lazy eights

Practical Test
- **Private SEL:** Not Applicable
- **Comm. SEL:** 30° Bank Steepest Point, 180° points ±100ft, Airspeed ±10 Knots, Heading ±10°

Standards CFI SEL:
- 30° Bank Steepest Point, 180° points ±100ft, Airspeed ±10 Knots, Heading ±10°

<table>
<thead>
<tr>
<th>Restrictions</th>
<th>Minimum</th>
<th>Optimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude</td>
<td>1500’</td>
<td>3000’</td>
<td></td>
</tr>
<tr>
<td>Speed</td>
<td></td>
<td>100 KIAS</td>
<td></td>
</tr>
</tbody>
</table>

Procedure

1. Pre-Landing Checklist
2. Clearing Turns
3. 100 KIAS
4. Choose a reference point off the wing
5. Simultaneously increase pitch and bank (slowly)
6. 45 point-15 pitch up and 15 bank (Max pitch up attitude)
7. Reduce pitch and increase bank
8. 90 point-level pitch -30 bank (Max pitch up altitude)
9. Continue reducing pitch and reduce bank
10. 135 point-15 pitch down-15 bank
11. 180 point-level flight-entry airspeed and altitude
12. Repeat in opposite direction
13. Cruise Checklist
Steep Spirals

Objective: To demonstrate and exhibit the knowledge of the elements related to Steep Spirals

Practical Test Standards
- Private SEL: Not Available
- Comm. SEL: Bank not to exceed 60°, Heading ±10, Airspeed ±10
- CFI SEL: Bank not to exceed 60°, Heading ±10, Airspeed ±10

<table>
<thead>
<tr>
<th>Restrictions</th>
<th>Minimum</th>
<th>Optimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude</td>
<td></td>
<td>3500'</td>
<td></td>
</tr>
<tr>
<td>Speed</td>
<td></td>
<td>80 KIAS</td>
<td></td>
</tr>
</tbody>
</table>

Procedure

1. Pre-Landing Checklist
2. Clearing Turns
3. Choose visual reference point
4. Reduce throttle to idle
5. Track at least three constant radius circles around reference point
6. Airspeed-constant
7. Bank angle-adjust for winds-not to exceed 60 bank
8. Clear engine once every 360 turn
9. Recover-roll out on specified heading (visual reference)
10. Cruise checklist
Eights On Pylons

Objective: To demonstrate and exhibit the knowledge of the elements related to Eights On Pylons

Practical Test Standards
- **Private SEL:** Not Available
- **Comm. SEL:** Bank angle of approx 30° to 40° at steepest point
- **CFI SEL:** Bank angle of approx 30° to 40° at steepest point

Restrictions

<table>
<thead>
<tr>
<th>Restrictions</th>
<th>Minimum</th>
<th>Optimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude</td>
<td></td>
<td>Enter Pivotal Altitude (Approx 900’)</td>
<td></td>
</tr>
<tr>
<td>Speed</td>
<td></td>
<td>100 KIAS</td>
<td></td>
</tr>
</tbody>
</table>

Procedure

1. Pre-Landing Checklist
2. Clearing Turns
3. Select a suitable area, where if an engine failure were to occur a safe landing can be made
4. Select two pylons to allow for minimal time spent wings level between the two
5. Enter maneuver on 45 midpoint downwind
6. Apply appropriate pitch corrections to compensate for changes in GS and;
7. To maintain line of sight reference with pylon (Pitch forward if point moves toward nose and pitch back if point moves toward tail)
8. Begin rollout to allow the airplane to proceed diagonally between the pylons at 45 angle
9. Begin second turn in the opposite direction of the first
10. Exit maneuver on entry heading
11. Cruise Checklist
Turns Around A Point

Objective: To demonstrate and exhibit the knowledge of the elements related to Turns Around A Point

Practical Test Standards

<table>
<thead>
<tr>
<th>Practical</th>
<th>Private SEL:</th>
<th>Altitude ±100 feet, Airspeed ±10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comm. SEL:</td>
<td>Not Available</td>
<td></td>
</tr>
<tr>
<td>CFI SEL:</td>
<td>Not Available</td>
<td></td>
</tr>
</tbody>
</table>

Restrictions

<table>
<thead>
<tr>
<th>Restrictions</th>
<th>Minimum</th>
<th>Optimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude</td>
<td>600'</td>
<td>1000'</td>
<td></td>
</tr>
<tr>
<td>Speed</td>
<td></td>
<td>100 KIAS</td>
<td></td>
</tr>
</tbody>
</table>

Procedure

1. Pre-Landing Checklist
2. Clearing Turns
3. Select a suitable area, where if an engine failure were to occur a safe landing can be made
4. 100 KIAS
5. Enter Maneuver Downwind
6. Maintain selected reference point by applying adequate wind drift correction and appropriate bank angle (not to exceed 45 degrees) with varying groundspeed
7. Exit maneuver downwind
8. Cruise Checklist
S-Turns

Objective: To demonstrate and exhibit the knowledge of the elements related to S-Turns

Practical Test Standards
- Private SEL: Altitude ±100 feet, Airspeed ±10
- Comm. SEL: Not Available
- CFI SEL: Not Available

Restrictions

<table>
<thead>
<tr>
<th>Restrictions</th>
<th>Minimum</th>
<th>Optimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude</td>
<td>600’</td>
<td>1000’</td>
<td></td>
</tr>
<tr>
<td>Speed</td>
<td></td>
<td></td>
<td>100 KIAS</td>
</tr>
</tbody>
</table>

Procedure

1. Pre-Landing Checklist
2. Clearing Turns
3. Select a suitable area, where if an engine failure were to occur a safe landing can be made
4. 100 KIAS
5. Enter maneuver downwind and select a suitable reference line that is perpendicular to the downwind flight path
6. Once crossing the reference line, make a 180 degree turn in the opposite direction, while applying the necessary wind-drift correction and bank angle (varies with GS)
7. Cross the reference line 180 degrees in the opposite direction wings level
8. Repeat again in the opposite direction
9. Distances on both sides of the reference line should be uniform
10. Cruise Checklist
Rectangular Course

Objective: To demonstrate and exhibit the knowledge of the elements related to Rectangular Course

Practical Test Standards
- Private SEL: Altitude ±100 feet, Airspeed ±10
- Comm. SEL: Not Available
- CFI SEL: Not Available

Restrictions

<table>
<thead>
<tr>
<th>Restrictions</th>
<th>Minimum</th>
<th>Optimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude</td>
<td>600'</td>
<td>1000'</td>
<td></td>
</tr>
<tr>
<td>Speed</td>
<td></td>
<td>100 KIAS</td>
<td></td>
</tr>
</tbody>
</table>

Procedure

1. Pre-Landing Checklist
2. Clearing Turns
3. Select a suitable area, where if an engine failure were to occur a safe landing can be made
4. 100 KIAS
5. Enter maneuver 45 degrees to the downwind
6. During the rectangular course maneuver ensure adequate wind-drift correction during straight and turning flight to maintain a constant ground track around the rectangular reference area. Apply necessary bank angle not to exceed 45 degrees
7. Exit 45 degrees on the downwind leg
8. Complete the cruise checklist
Go-Around/Rejected Landing

Objective: To demonstrate and exhibit the knowledge of the elements related to a Go-Around/Rejected Landing

Practical Test Standards

<table>
<thead>
<tr>
<th>Practical</th>
<th>Test Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private SEL:</td>
<td>Vy +10/-5 Knots</td>
</tr>
<tr>
<td>Comm. SEL:</td>
<td>Vy ±5 Knots</td>
</tr>
<tr>
<td>CFI SEL:</td>
<td>Vy ±5 Knots</td>
</tr>
</tbody>
</table>

Restrictions

<table>
<thead>
<tr>
<th>Restrictions</th>
<th>Minimum</th>
<th>Optimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed</td>
<td>62 KIAS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Procedure

1. Apply full power
2. Flaps 20
3. Climb 62 KIAS
4. Positive Rate Flaps 10
5. Vy (74KIAS)-Flaps 0
6. Sidestep Left or Right – Announce intentions to ATC or CTAF
Emergency Descent

Objective: To demonstrate and exhibit the knowledge of the elements related to an Emergency Descent

Practical
- **Private SEL:** Recognizes situations where an emergency descent is needed, Establishes appropriate airspeed and configuration, Maintains positive load factors

Test
- **Comm. SEL:** Recognizes situations where an emergency descent is needed, Establishes appropriate airspeed and configuration, Maintains positive load factors

Standards
- **CFI SEL:** Recognizes situations where an emergency descent is needed, Establishes appropriate airspeed and configuration, Maintains positive load factors

Restrictions

<table>
<thead>
<tr>
<th>Restrictions</th>
<th>Minimum</th>
<th>Optimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed</td>
<td></td>
<td></td>
<td>129 KIAS</td>
</tr>
</tbody>
</table>

Procedure

1. Pre-Landing Checklist
2. Clearing Turns
3. Power Idle
4. Decrease pitch, establish 129 KIAS
5. Bank 30 degrees left or right
6. Level off at desired altitude (approx 200 ft prior)
7. Cruise Checklist